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ABSTRACT

In this paper, we propose a kernel multi-metric learning al-
gorithm for multi-channel transient acoustic signal classifica-
tion. The proposed method learns a set of metrics jointly for
multi-channel transient acoustic signals in a kernel-induced
feature space to exploit the non-linearity of the data for im-
proving the classification performance. An effective algo-
rithm is developed for the task of learning multiple metrics
in the kernel space. By learning the multiple metrics jointly
within a single unified optimization framework, we can learn
better metrics to integrate the multiple channels of the signal
for a joint classification. Experimental results compared with
classical as well as recent algorithms on real-world acoustic
datasets verified the effectiveness of the proposed method.

Index Terms— metric learning, kernel learning, multi-
channel acoustic signal classification

1. INTRODUCTION

Transient acoustic signal classification is an important topic in
surveillance and security. It applications range from daily life
to battlefield tasks [1]. The challenge of transient acoustic sig-
nal classification lies in the fact that the typical environment is
not ideal, but is usually noisy with environmental variations.
To handle the noise and extract useful features for classifi-
cation, variant techniques have been proposed [1, 2, 3]. In
[1], a maximum likelihood method was proposed for restor-
ing transient signals from a sensor network with wavelet sub-
band features for classification. The authors of [2] proposed
a denoising technique based on short time spectral attenua-
tion for signals from a microphone array for target detection
and localization. In [3], a wavelet packet transformation was
adopted for feature extraction followed by classification. Al-
most all the previous algorithms on acoustic signal classifica-
tion have ignored the use of multiple measurements as in the
case of multi-channel signals for improving the classification
performance.
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In our previous work [4], a heterogeneous multi-metric
learning (HMML) method for multi-channel transient acous-
tic signal classification is developed. While applied onto only
multi-channel acoustic signals in [4], the algorithm can be
potentially applied to signals collected from heterogeneous
sources. In this work, we extend our previous work and pro-
pose a multi-metric learning algorithm in the Reproducing
Kernel Hilbert Space (RKHS), which can exploit the non-
linearity of the data in the feature space via a non-linear map-
ping associated with a kernel. Experimental results verified
the effectiveness of the proposed method over several con-
ventional and comparable methods.

2. HETEROGENEOUS MULTI-METRIC LEARNING
MODEL REVISITED

The aim of HMML is to learn a projection set {Ps}Ss=1 (or a
metric set {Ms}Ss=1, where Ms = Ps�Ps) adapted to each
channel for improving the joint classification performance.
Given N training samples from S potentially heterogeneous

channels
{
({xs

i }Ss=1, yi)
}N

i=1
, the following model is used in

[4] to learn the metric set,

Minimize E
({Ps}Ss=1

)
= (1− λ)Epull + λEpush, (1)

where Ps is the projection matrix for the s-th channel, and

Epull({Ps}Ss=1) =
∑

i,j�i

S∑
s=1

∥∥Ps(xs
i − xs

j)
∥∥2

,

Epush({Ps}Ss=1) =
∑

i,j�i

∑
l

(1− yil)
[
1 +

S∑
s=1

∥∥Ps(xs
i − xs

j)
∥∥2

−
S∑

s=1

‖Ps(xs
i − xs

l )‖2
]
+

,

where i and l are indexes of the training samples and j � i
denotes the set of “target” neighbors of xi, i.e., the k nearest
samples with the same label as xi. yil ∈ {0, 1} is a binary
number indicating whether xi and xl are of the same class.
[·]+ = max(·, 0) is a hinge loss. The samples contribut-
ing to the energy Epush(P) are termed as “impostors,” which
are those samples within the radius defined by target samples
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(plus a margin) but belong to classes which is different from
the target class.

To solve (1) effectively, a gradient-based optimization al-
gorithm is developed in [4]. After the metric set {Ms}Ss=1
is learned, we can proceed to perform classification by inte-
grating the information from all the channels. Given a multi-
channel test sample xt = {xs

t}Ss=1, we can classify it us-
ing the following energy-based classification method given by
(3), which can be used for better classification performance
[5]. Denoting the distance between the multi-channel test
sample xt and a multi-channel training sample xi = {xs

i}Ss=1
as

DM(xt,xi) =
S∑

s=1

dMs(xs
t ,x

s
i ), (2)

then the energy-based classification can be achieved via [5]:

ŷt = arg min
yt

(1− λ)
∑
j�t

DM(xt,xj)

+ λ
∑

j�t,l

(1− ytl)
[
1 + DM(xt,xj)−DM(xt,xl)

]
+

+ λ
∑

i,j�i

(1− yit)
[
1 + DM(xi,xj)−DM(xi, xt)

]
+

.

(3)

The first term in (3) represents the accumulated energy for
the k target neighbors of xt; the second term accumulates the
hinge loss over all the imposters for xt; the third term rep-
resents the accumulated energy for different labeled samples
whose neighbor perimeters are invaded by x t, i.e., taking xt

as their imposter.

3. MULTI-METRIC LEARNING IN THE
REPRODUCING KERNEL HILBERT SPACE

In this section, we present a multi-metric learning method in
high-dimensional feature space induced by kernel mapping
as a generalization of HMML method in [4]. We denote this
method as kernel-based HMML (KHMML) in the sequel.

3.1. Multi-Metric Learning in Kernel Space

By introducing a non-linear feature mapping function φ(·) :
R

m → R
n with n � m, and denote φs

i = φ(xs
i ), we can

formulate the KHMML model as follows:

Minimize E({Ps}Ss=1

)
= (1− λ)Epull + λEpush, (4)

where Ps is the projection matrix for the s-th channel in the
kernel space, and

Epull({Ps}Ss=1) =
∑

i,j�i

S∑
s=1

∥∥Ps(φs
i − φs

j)
∥∥2

,

Epush({Ps}Ss=1) =
∑

i,j�i

∑
l

(1− yil)
[
1 +

S∑
s=1

∥∥Ps(φs
i − φs

j)
∥∥2

−
S∑

s=1

‖Ps(φs
i − φs

l )‖2
]
+

.

By differentiating (4) with respect to Ps, we get the following
expression:

Qs
t =

∂E({Ps
t}Ss=1)

∂Ps
t

(5)

= (1− λ)Ps
t

∑
i,j�i

(φs
i − φs

j)(φ
s
i − φs

j)
�

+ λPs
t

∑
(i,j,l)∈Nt

[(φs
i − φs

j)(φ
s
i − φs

j)
� − (φs

i − φs
l )(φ

s
i − φs

l )
�],

where Nt is defined as the set of triple-indices (i, j, l) ∈ Nt

if and only if (i, j, l) triggers the hinge loss in Epush. Note
that in this case, as the dimensionality of RKHS induced by
φ(·) may be infinite, it is not possible to update the projection
set {Ps} directly. Therefore, to learn the projection set {Ps}
in the kernel space, we adopt a parametric representation for
it as a linear combination of the feature vectors in the form
of Ps = ΘsΦs�, where Θs is referred to as the combination
coefficient matrix and Φs denotes the data matrix in RKHS
constructed from N training samples for channel s as Φs =[
φs

1, φ
s
2, · · · , φs

N

]
. Then the projection of a sample xs

t with
Ps in the RKHS can be computed as:

Psφ(xs
t) = ΘΦs�φs

t = Θ

⎡
⎢⎢⎢⎣

k(xs
1,x

s
t )

k(xs
2,x

s
t )

...
k(xs

N ,xs
t )

⎤
⎥⎥⎥⎦ = Θks

t , (6)

where k(·, ·) is the kernel function associated with the
feature mapping function φ(·), specifically, k(x1,x2) =
φ(x1)�φ(x2). Substituting Ps = ΘsΦs� into (5) and us-
ing (6), we get:

Qs
t = (1− λ)Θs

tΦ
s� ∑

i,j�i(φ
s
i − φs

j)(φ
s
i − φs

j)
� (7)

+ λΘs
tΦ

s� ∑
(i,j,l)∈Nt

[
(φs

i − φs
j)(φ

s
i − φs

j)
� − (φs

i − φs
l )(φ

s
i − φs

l )
�]

= (1− λ)Θs
t

∑
i,j�i

(ks
i − ks

j)(φ
s
i − φs

j)
�

+ λΘs
t

∑
(i,j,l)∈Nt

[
(ks

i − ks
j)(φ

s
i − φs

j)
� − (ks

i − ks
l )(φ

s
i − φs

l )
�]

.

Note that for the term (ks
i −ks

j)(φ
s
i −φs

j)
�, we can reformu-

late it as follows:

(ks
i − ks

j)(φ
s
i − φs

j)
� = (ks

i − ks
j)φ

s�
i − (ks

i − ks
j)φ

s�
j

= Δ
(ks

i −ks
j )

i Φs� −Δ
(ks

i −ks
j )

j Φs�

= [Δ
(ks

i −ks
j )

i −Δ
(ks

i −ks
j )

j ]Φs�,

(8)

where Δ(x)
i is a matrix constructed by using x as its i-th col-

umn vector and zeros elsewhere:

Δ
(x)
i =

[ i−1 columns︷ ︸︸ ︷
0, · · · ,0,x,0, · · · ,0

]
. (9)
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Substituting (8) into (7), we can get:

Qs
t = (1− λ)Θs

t

∑
i,j�i

[
Δ

(ks
i −ks

j )

i −Δ
(ks

i −ks
j )

j

]
Φs�

+ λΘs
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l )
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(ks
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l

]
Φs�

= ΩsΦs�,

where Ωs = (1 − λ)Θs
t

∑
i,j�i

[
Δ
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i−ks

j

i − Δ
ks

i−ks
j

j

]
+

λΘs
t

∑
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[
Δ

ks
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j

i −Δ
ks
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j
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l
i +Δks

i−ks
l

l

]
.

By the above derivation, we have represented the kernel gradi-
ent direction as a linear function of the kernel matrix. There-
fore, we can represent the updated projection Ps by using the
updated combination coefficient matrix Θs at time step t + 1
as:

Ps
t+1 ← Ps

t − αQs
t = Θs

tΦ
s� − αΩsΦs�

= (Θs
t − αΩs)Φs� = Θs

t+1Φ
s�.

(10)

Therefore, by (10), we have learned the projection matrix P s

in RKHS, which is directly intractable. The above derivation
is inspired by [6], which is designed for single metric learn-
ing. The major steps of the proposed KHMML algorithm is
summarized in Algorithm 1.

3.2. Multi-Channel Signal Classification in Kernel Space

After we learn the combination coefficient matrix set
{Θs}Ss=1, we can use it to classify the test samples. To do
that, we first show how to calculate the distance in the ker-
nel space with the learned kernel metric set. The distance
between the i-th and j-th samples can be calculated as:

dMs (φ(xs
i ), φ(xs

j)) = ‖Psφ(xs
i )−Psφ(xs

j)‖22
= ‖Θs(ks

i − ks
j)‖22.

(11)

By substituting this into (2) and (3), we can perform classifi-
cation for the test sample with the learned metric in RKHS.

4. EXPERIMENT RESULTS

In this section, we carry out experiments on a number of real
acoustic datasets and compare the results with several con-
ventional classification methods to verify the effectiveness
of the proposed method. We use the multi-channel transient
acoustic dataset collected for launch and impact of different
weapons (mortar and rocket) using a tetrahedral acoustic sen-
sor array. For each event, the acoustic sensor array measures
the signal from a launch/impact event using four acoustic sen-
sors simultaneously. We have a total of four datasets (referred
to as Dataset 1∼4) [7]. Among these four datasets, some con-
sist of four subsets collected by an acoustic sensor array de-
ployed at four different physical sites. We first segment the
raw signal with spectral maximum detection [8] in order to
locate the physical event and then extract the first 50 Cepstral

Algorithm 1: Kernel Multi-Metric Learning.

Input: training set {({xs
i}Ss=1, yi)}Ni=1, number of

nearest neighbor L, kernel function k(·, ·)
Output: combination coefficient matrix set {Θs}Ss=1

used for multi-metrics in kernel space
Initialize: t← 0, {Θs

t}Ss=1,Nt = {} ;
while convergence condition false do

Update the active setNt+1 by collecting the triplets
(i, j, l) that incur the hinge loss in kernel space;
for s = 1, 2, · · · , S do

Compute the gradient Ωs for the s-th channel;
Take gradient step for the combination
coefficient matrix of the s-th channel:
Θs

t+1 ← Θs
t − αΩs;

t← t + 1

Table 1. Classification accuracy for the two-class mortar
problem (S = 4, L = 3, r = 0.5).

Dataset 1 2 3 4 Average

Logistic 0.7778 0.8069 0.7183 0.6857 0.7472
SVM 0.8073 0.7991 0.7917 0.7693 0.7919
CSVM 0.8173 0.8448 0.7938 0.8000 0.8140

HMML [4] 0.8673 0.8621 0.8525 0.8240 0.8515
JSRC [7] 0.8515 0.8828 0.8857 0.8147 0.8534
KHMML 0.8728 0.8828 0.8607 0.8360 0.8631

coefficients (start from the second coefficient) [9] for classifi-
cation.

To evaluate the effectiveness of the proposed method, we
compare the results with different classical algorithms, in-
cluding sparse linear multinomial Logistic Regression [10]
and Linear Support Vector Machine (SVM) [11], which is
used in two modes in our experiments: (1) treating each sen-
sor signal separately (SVM); (2) concatenating all the signals
from different sensors (CSVM). One-vs.-all scheme is used
for SVM in the case of multi-class classification. The joint
sparse representation-based classification method (JSRC) [7]
and our previously proposed HMML method [4] are also
compared. For KHMML, Gaussian kernel is used in our ex-
periments, with bandwidth σ = 0.8, which gives desirable
results empirically. The number of nearest neighbors is set as
L = 3. The combination weight is set as λ = 0.5.

4.1. Two-Class Event Classification

In this experiment, we focus on the classification problem be-
tween launch and impact for a single kind of weapon (mortar)
using all four datasets. We randomly split each dataset into
two halves (training ratio r = 0.5) for training and testing
and run the experiment five times. We report the average per-
formance in Table 1 for the four datasets. It can be seen that
KHMML outperforms HMML for all the datasets, indicating
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Table 2. Classification accuracy for the four-class problem
(S = 4, L = 3, r = 0.5).

Dataset 1 2 3 4 Average

Logistic 0.7440 0.7234 0.6882 0.7367 0.7231
SVM 0.7410 0.7227 0.6860 0.7474 0.7243

CSVM 0.7487 0.7375 0.6945 0.7169 0.7244
KNN 0.6204 0.7188 0.6236 0.7456 0.6771

HMML [4] 0.8014 0.7313 0.7284 0.7928 0.7635
JSRC [7] 0.8152 0.7969 0.7494 0.7928 0.7886
KHMML 0.8252 0.7862 0.7512 0.8632 0.8065

the effectiveness of the multi-metric learning in kernel space
for exploiting the non-linearity over the linear property. Fur-
thermore, the proposed KHMML method performs overall
better than the joint sparse representation-based method [7],
which has been shown to be effective for the multi-channel
transient acoustic signal classification task.

4.2. Four-Class Event Classification

To further verify the effectiveness of the proposed method, we
test it on a four-class classification problem, where we want
to decide whether the event is launch or impact and whether
the weapon is mortar or rocket, which is much more chal-
lenging. Similarly, we generate training and testing datasets
by randomly splitting each dataset into two halves. We repeat
the experiment five times and report the average performance
for each dataset as well as the overall average classification
accuracy in Table 2. Again, it is shown that the KHMML
method improves the classification accuracy over HMML by
a large margin on all the datasets, and performs comparable
to or better than JSRC on different datasets.

4.3. Considering the Effects of Sensor Sites

In this experiment, to investigate the classification perfor-
mance using data captured by sensors at different physical
sites, we generate training and testing datasets according to
the physical sites where the acoustic sensor array is deployed.
Specifically, the Dataset 2 contains subsets collected from
four different sites. We keep all the data from one site for
testing and data from all the other sites for training; we do
this for each dataset. The classification results are summa-
rized in Table 3. Table 3 shows that the proposed KHMML
method is more robust to sensors’ site locations and performs
the best on average, indicating the effectiveness brought by
joint multi-metric learning in the kernel space.

5. CONCLUSIONS

We have presented in this paper an effective method to learn
jointly a set of metrics in the kernel space for multi-channel
transient acoustic signal classification. By exploiting the non-
linearity in the data via kernel mapping, we are able to learn a

Table 3. Classification accuracy for the four-class classifica-
tion with training and testing on data measured at different
physical sites (S = 4, L = 3).

Method
Physical Sites

Average
Site 1 Site 2 Site 3 Site 4

Logistic 0.6797 0.6829 0.7314 0.7109 0.6394
SVM 0.6901 0.7134 0.8005 0.6652 0.6449

CSVM 0.7292 0.7073 0.7766 0.7043 0.6574
HMML [4] 0.7917 0.7805 0.7766 0.7391 0.7627
JSRC [7] 0.8125 0.8049 0.7447 0.7652 0.7818
KHMML 0.8229 0.8537 0.8298 0.7565 0.8157

set of metrics adapted for each channel jointly for improving
the classification performance. Experiments on real-world
multi-sensor datasets compared with several conventional as
well as recent developed methods verified the effectiveness
of the proposed method. The method developed in this paper
is not limited to acoustic signals and is readily applicable to
other classification tasks.
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